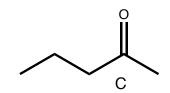
1

Chem 360-Jasperse

Test #2

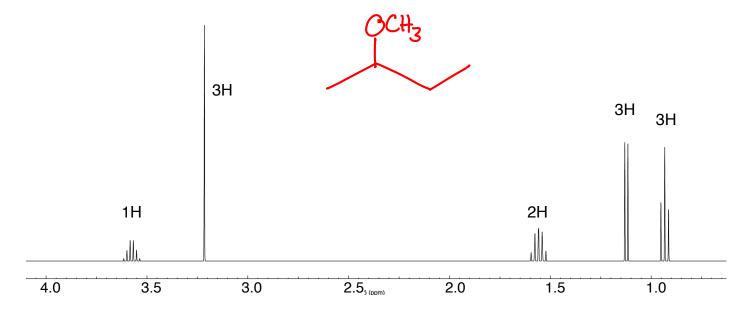
NMR, IR

Version 2


Predict the ¹H NMR spectrum. Include the source (CH₃-1, etc); approximate chemical shifts (1's, 2's, etc.); integration (1H, 2H, etc.); and splitting (either list the number of lines, or else use letters: "s" for singlet; "d" for doublet etc.). If signals are symmetry equivalent, do not list them twice.

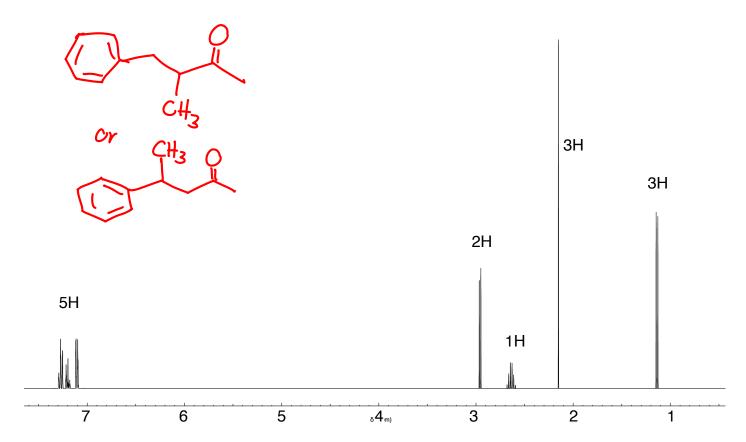
	Source	Chem Shift	Integration	Splitting
	CH3-a	2'ا	3 H	3 = +
d	CH2-6	2'5	24	4 %
$a \wedge f$	CH -C	یاح	111	6 mult.
1/ Yee Yg	CH3-d	21ء	3 H	2 d
	CH2-e	3's	24	2 d
	CH-f	3'5	14	7 mult.
	CH3-g	110	6H	$\frac{1}{2}$ d
	"			

2. Predict the ¹³C NMR spectrum. Include the approximate chemical shifts (220-160, 160-100, 100-50, or 50-0) and the splitting if a coupled carbon NMR was taken (can either use letters, q, t, d, s, or else number of lines).


,	Source	Approximate Chem Shift	Splitting
) 	C1	220-160	2
	C2	160-100 160-100 100-50	d
0 1 72	C3	160-100	S
4 //3	C4	100-50	+
	C5	<i>50-0</i>	0
5		-	0

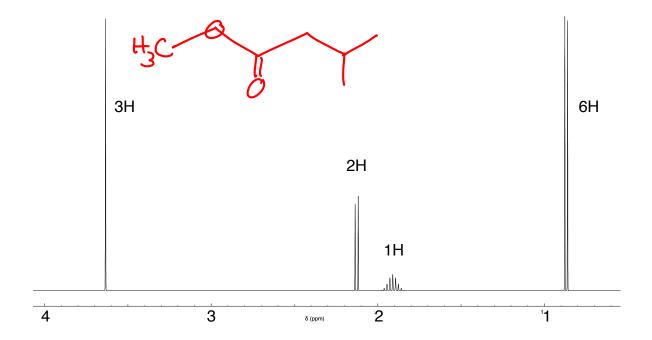
3. Match the following structures with the listed feature IR signals. (Write the letter of the structure by the IR signal):

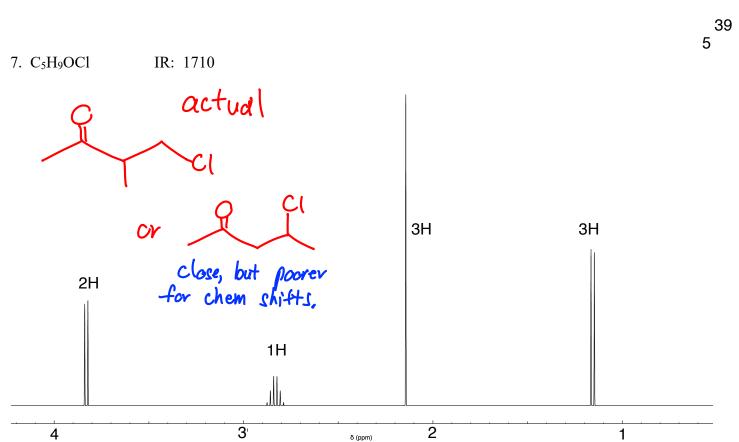
For the remainder of the test, solve the structures for the following. If you get a structure perfect, you will get full credit. If you do not get a structure perfect, you may still get some partial credit. Thus, it is in your interest to show some of you work, make a structure, or tell me what you know for sure.


4. C₅H₁₂O IR: Nothing interesting

3

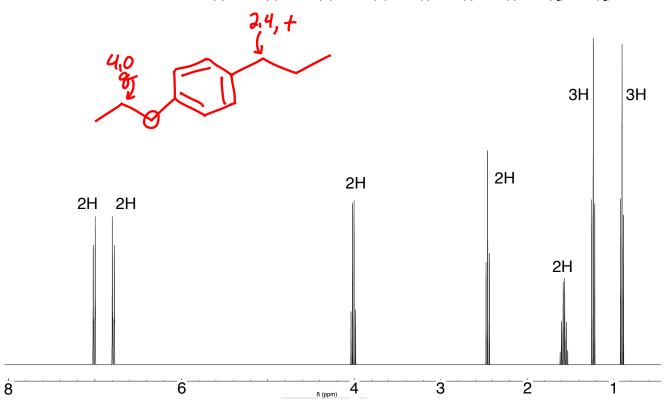
5. $C_{11}H_{14}O$ IR: 1710 ¹³C: 211 (s), 139 (s), 134 (d), 127 (d), 122 (d), 42 (d), 35 (t), 20 (q), 15 (q)

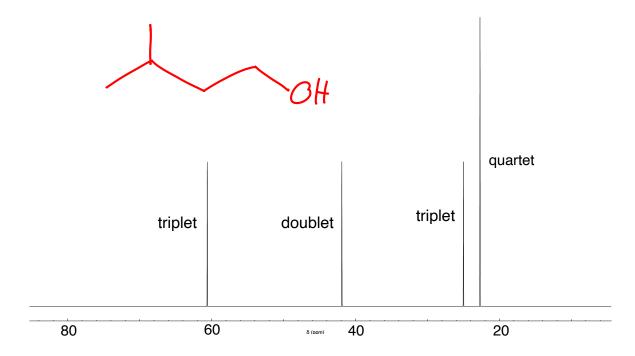

• (Note: There are two plausible solutions to this problem)



6. C₆H₁₂O₂

IR: 1745

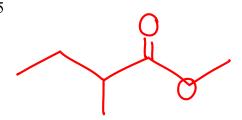

¹³C: 170 (s), 65 (q), 42 (t), 37 (d), 18 (q)


 $C_{11}H_{16}O$ 8.

IR: Nothing interesting ¹³C: 148 (s), 140 (s), 130 (d), 125 (d), 64 (t), 38 (t), 25 (t), 15 (q), 14 (q)

9. C₅H₁₂O

- The spectrum displayed is a "decoupled" 13-C NMR spectrum. (No splitting)
- But beside each coupled peak is a label that tells whether the carbon would be a singlet, doublet, triplet, or quartet **if** a "coupled" 13-C NMR had been obtained.


8

0.92, 3H, triplet 1.12, 3H, doublet

1.54, 2H, pentet

2.38, 1H, sextet

3.89, 3H, s

• I have not, accidentally or intentionally, seen copies or parts of the test in advance, including online. In the event that I did, I will report this to the instructor as soon as possible.